Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Public Health ; 11: 1180932, 2023.
Article in English | MEDLINE | ID: covidwho-2281615

ABSTRACT

[This corrects the article DOI: 10.3389/fpubh.2021.636023.].

2.
BMJ Open ; 12(12): e065937, 2022 12 09.
Article in English | MEDLINE | ID: covidwho-2161860

ABSTRACT

OBJECTIVE: We analyse the impact of different vaccination strategies on the propagation of COVID-19 within the Madrid metropolitan area, starting on 27 December 2020 and ending in Summer of 2021. MATERIALS AND METHODS: The predictions are based on simulation using EpiGraph, an agent-based COVID-19 simulator. We first summarise the different models implemented in the simulator, then provide a comprehensive description of the vaccination model and define different vaccination strategies. The simulator-including the vaccination model-is validated by comparing its results with real data from the metropolitan area of Madrid during the third COVID-19 wave. This work considers different COVID-19 propagation scenarios for a simulated population of about 5 million. RESULTS: The main result shows that the best strategy is to vaccinate first the elderly with the two doses spaced 56 days apart; this approach reduces the final infection rate by an additional 6% and the number of deaths by an additional 3% with respect to vaccinating first the elderly at the interval recommended by the vaccine producer. The reason is the increase in the number of vaccinated individuals at any time during the simulation. CONCLUSION: The existing level of detail and maturity of EpiGraph allowed us to evaluate complex scenarios and thus use it successfully to help guide the strategy for the COVID-19 vaccination campaign of the Spanish health authorities.


Subject(s)
COVID-19 , Vaccines , Humans , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Vaccination , Computer Simulation
3.
Influenza Other Respir Viruses ; 16(6): 1014-1025, 2022 11.
Article in English | MEDLINE | ID: covidwho-1956749

ABSTRACT

BACKGROUND: With the emergence of SARS-CoV-2, influenza surveillance systems in Spain were transformed into a new syndromic sentinel surveillance system. The Acute Respiratory Infection Surveillance System (SiVIRA in Spanish) is based on a sentinel network for acute respiratory infection (ARI) surveillance in primary care and a network of sentinel hospitals for severe ARI (SARI) surveillance in hospitals. METHODS: Using a test-negative design and data from SARI admissions notified to SiVIRA between January 1 and October 3, 2021, we estimated COVID-19 vaccine effectiveness (VE) against hospitalization, by age group, vaccine type, time since vaccination, and SARS-CoV-2 variant. RESULTS: VE was 89% (95% CI: 83-93) against COVID-19 hospitalization overall in persons aged 20 years and older. VE was higher for mRNA vaccines, and lower for those aged 80 years and older, with a decrease in protection beyond 3 months of completing vaccination, and a further decrease after 5 months. We found no differences between periods with circulation of Alpha or Delta SARS-CoV-2 variants, although variant-specific VE was slightly higher against Alpha. CONCLUSIONS: The SiVIRA sentinel hospital surveillance network in Spain was able to describe clinical and epidemiological characteristics of SARI hospitalizations and provide estimates of COVID-19 VE in the population under surveillance. Our estimates add to evidence of high effectiveness of mRNA vaccines against severe COVID-19 and waning of protection with time since vaccination in those aged 80 or older. No substantial differences were observed between SARS-CoV-2 variants (Alpha vs. Delta).


Subject(s)
COVID-19 , Respiratory Tract Infections , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Hospitalization , Humans , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , SARS-CoV-2/genetics , Sentinel Surveillance , Spain/epidemiology , Vaccine Efficacy
4.
Euro Surveill ; 26(48)2021 12.
Article in English | MEDLINE | ID: covidwho-1613506

ABSTRACT

Prioritisation of elderly people in COVID-19 vaccination campaigns aimed at reducing severe outcomes in this group. Using EU/EEA surveillance and vaccination uptake, we estimated the risk ratio of case, hospitalisation and death notifications in people 80 years and older compared with 25-59-year-olds. Highest impact was observed for full vaccination uptake 80% or higher with reductions in notification rates of cases up to 65% (IRR: 0.35; 95% CI: 0.13-0.99), hospitalisations up to 78% (IRR: 0.22; 95% CI: 0.13-0.37) and deaths up to 84% (IRR: 0.16; 95% CI: 0.13-0.20).


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Hospitalization , Humans , SARS-CoV-2 , Vaccination
5.
Viruses ; 13(12)2021 12 03.
Article in English | MEDLINE | ID: covidwho-1554893

ABSTRACT

Measuring mortality has been a challenge during the COVID-19 pandemic. Here, we compared the results from the Spanish daily mortality surveillance system (MoMo) of excess mortality estimates, using a time series analysis, with those obtained for the confirmed COVID-19 deaths reported to the National Epidemiological Surveillance Network (RENAVE). The excess mortality estimated at the beginning of March 2020 was much greater than what has been observed in previous years, and clustered in a very short time. The cumulated excess mortality increased with age. In the first epidemic wave, the excess mortality estimated by MoMo was 1.5 times higher than the confirmed COVID-19 deaths reported to RENAVE, but both estimates were similar in the following pandemic waves. Estimated excess mortality and confirmed COVID-19 mortality rates were geographically distributed in a very heterogeneous way. The greatest increase in mortality that has taken place in Spain in recent years was detected early by MoMo, coinciding with the spread of the COVID-19 pandemic. MoMo is able to identify risk situations for public health in a timely manner, relying on mortality in general as an indirect indicator of various important public health problems.


Subject(s)
COVID-19/mortality , Pandemics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Epidemiological Monitoring , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Public Health , SARS-CoV-2 , Spain/epidemiology , Young Adult
6.
Comput Biol Med ; 139: 104938, 2021 12.
Article in English | MEDLINE | ID: covidwho-1525745

ABSTRACT

As long as critical levels of vaccination have not been reached to ensure heard immunity, and new SARS-CoV-2 strains are developing, the only realistic way to reduce the infection speed in a population is to track the infected individuals before they pass on the virus. Testing the population via sampling has shown good results in slowing the epidemic spread. Sampling can be implemented at different times during the epidemic and may be done either per individual or for combined groups of people at a time. The work we present here makes two main contributions. We first extend and refine our scalable agent-based COVID-19 simulator to incorporate an improved socio-demographic model which considers professions, as well as a more realistic population mixing model based on contact matrices per country. These extensions are necessary to develop and test various sampling strategies in a scenario including the 62 largest cities in Spain; this is our second contribution. As part of the evaluation, we also analyze the impact of different parameters, such as testing frequency, quarantine time, percentage of quarantine breakers, or group testing, on sampling efficacy. Our results show that the most effective strategies are pooling, rapid antigen test campaigns, and requiring negative testing for access to public areas. The effectiveness of all these strategies can be greatly increased by reducing the number of contacts for infected individual.


Subject(s)
COVID-19 , Humans , Incidence , SARS-CoV-2 , Spain/epidemiology
7.
Front Public Health ; 9: 636023, 2021.
Article in English | MEDLINE | ID: covidwho-1167385

ABSTRACT

This work presents simulation results for different mitigation and confinement scenarios for the propagation of COVID-19 in the metropolitan area of Madrid. These scenarios were implemented and tested using EpiGraph, an epidemic simulator which has been extended to simulate COVID-19 propagation. EpiGraph implements a social interaction model, which realistically captures a large number of characteristics of individuals and groups, as well as their individual interconnections, which are extracted from connection patterns in social networks. Besides the epidemiological and social interaction components, it also models people's short and long-distance movements as part of a transportation model. These features, together with the capacity to simulate scenarios with millions of individuals and apply different contention and mitigation measures, gives EpiGraph the potential to reproduce the COVID-19 evolution and study medium-term effects of the virus when applying mitigation methods. EpiGraph, obtains closely aligned infected and death curves related to the first wave in the Madrid metropolitan area, achieving similar seroprevalence values. We also show that selective lockdown for people over 60 would reduce the number of deaths. In addition, evaluate the effect of the use of face masks after the first wave, which shows that the percentage of people that comply with mask use is a crucial factor for mitigating the infection's spread.


Subject(s)
COVID-19/transmission , Computer Simulation , Social Networking , Algorithms , COVID-19/epidemiology , COVID-19/prevention & control , Cities , Communicable Disease Control , Epidemics , Humans , Masks , Quarantine , Seroepidemiologic Studies , Spain , Travel
8.
BMJ ; 371: m4509, 2020 11 27.
Article in English | MEDLINE | ID: covidwho-947819

ABSTRACT

OBJECTIVE: To estimate the infection fatality risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), based on deaths with confirmed coronavirus disease 2019 (covid-19) and excess deaths from all causes. DESIGN: Nationwide seroepidemiological study. SETTING: First wave of covid-19 pandemic in Spain. PARTICIPANTS: Community dwelling individuals of all ages. MAIN OUTCOME MEASURES: The main outcome measure was overall, and age and sex specific, infection fatality risk for SARS-CoV-2 (the number of covid-19 deaths and excess deaths divided by the estimated number of SARS-CoV-2 infections) in the community dwelling Spanish population. Deaths with laboratory confirmed covid-19 were obtained from the National Epidemiological Surveillance Network (RENAVE) and excess all cause deaths from the Monitoring Mortality System (MoMo), up to 15 July 2020. SARS-CoV-2 infections in Spain were derived from the estimated seroprevalence by a chemiluminescent microparticle immunoassay for IgG antibodies in 61 098 participants in the ENE-COVID nationwide seroepidemiological survey between 27 April and 22 June 2020. RESULTS: The overall infection fatality risk was 0.8% (19 228 of 2.3 million infected individuals, 95% confidence interval 0.8% to 0.9%) for confirmed covid-19 deaths and 1.1% (24 778 of 2.3 million infected individuals, 1.0% to 1.2%) for excess deaths. The infection fatality risk was 1.1% (95% confidence interval 1.0% to 1.2%) to 1.4% (1.3% to 1.5%) in men and 0.6% (0.5% to 0.6%) to 0.8% (0.7% to 0.8%) in women. The infection fatality risk increased sharply after age 50, ranging from 11.6% (8.1% to 16.5%) to 16.4% (11.4% to 23.2%) in men aged 80 or more and from 4.6% (3.4% to 6.3%) to 6.5% (4.7% to 8.8%) in women aged 80 or more. CONCLUSION: The increase in SARS-CoV-2 infection fatality risk after age 50 appeared to be more noticeable in men than in women. Based on the results of this study, fatality from covid-19 was greater than that reported for other common respiratory diseases, such as seasonal influenza.


Subject(s)
COVID-19/mortality , Seroepidemiologic Studies , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Antibodies, Viral/blood , Child , Child, Preschool , Female , Humans , Immunoglobulin G/blood , Infant , Infant, Newborn , Male , Middle Aged , Risk , Sex Factors , Spain/epidemiology , Young Adult
9.
Euro Surveill ; 25(26)2020 07.
Article in English | MEDLINE | ID: covidwho-639161

ABSTRACT

A remarkable excess mortality has coincided with the COVID-19 pandemic in Europe. We present preliminary pooled estimates of all-cause mortality for 24 European countries/federal states participating in the European monitoring of excess mortality for public health action (EuroMOMO) network, for the period March-April 2020. Excess mortality particularly affected ≥ 65 year olds (91% of all excess deaths), but also 45-64 (8%) and 15-44 year olds (1%). No excess mortality was observed in 0-14 year olds.


Subject(s)
Cause of Death/trends , Coronavirus Infections/mortality , Coronavirus/isolation & purification , Influenza, Human/mortality , Pneumonia, Viral/mortality , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Child , Child, Preschool , Coronavirus Infections/diagnosis , Disease Outbreaks , Europe/epidemiology , Female , Humans , Infant , Infant, Newborn , Influenza, Human/diagnosis , Male , Middle Aged , Mortality/trends , Pandemics , Pneumonia, Viral/diagnosis , Population Surveillance , Preliminary Data , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL